Section: Anatomy

Original Research Article

MAPPING PARACONDYLAR CORRIDOR—AN THE **OSTEOLOGICAL** STUDY INTERMEDIATE OF CONDYLAR CANAL

Salini Dharmadas¹, Geena Augustine², Siddharth MK³, Carol K. Arun³, Hildiya Varghese³, Achsah Aby³, Akshatha Binusyam⁴

Received : 16/08/2025 Received in revised form: 06/10/2025 Accepted : 23/10/2025

Corresponding Author:

Dr. Salini Dharmadas,Assistant Professor, Department of Anatomy, PK Das Institute of Medical Sciences, Vaniamkulam PO, Ottapalam, Palakkad, Kerala, India. Email: salinibinusyam24@gmail.com

DOI: 10.70034/ijmedph.2025.4.162

Source of Support: Nil. Conflict of Interest: None declared

Int J Med Pub Health

2025; 15 (4); 909-912

ABSTRACT

Background: Along the lateral surface of the occipital condyle, a small accessory opening—the intermediate condylar canal (ICC), also known as the paracondylar canal—may be present. Because published descriptions use differing definitions and methods, the actual frequency, form, and precise relations of the ICC to nearby skull-base structures (notably the hypoglossal canal and jugular foramen) remain only partly characterized for surgical planning. The objective is to close practical gaps in the literature, we quantified the ICC's occurrence and sidedness, described its form and opening direction, mapped its relationships to standard landmarks, and considered the implications for operative planning.

Materials and Methods: Materials comprised 50 archival dry skulls of unknown age and sex, assessed macroscopically. A flexible probe was used to test canal patency and to determine whether the canal opened toward the hypoglossal canal. The ICC was categorized as complete, incomplete, or trace (groove-like). Using a vernier caliper, we recorded the transverse and antero-posterior diameters and distances from the posterior wall of the jugular foramen, the lateral border of the occipital condyle, and the medial margin of the stylomastoid foramen. Descriptive statistics were used.

Results: ICCs were present in 18/50 skulls (36%): seven bilateral and eleven unilateral (total 25 canals). Approximately 94.5% opened anteriorly into the hypoglossal canal. Expression was complete in ~48%, incomplete in ~37%, and trace in ~14%. Mean morphometry (mm): transverse diameter 2.43 (right)/2.37 (left); antero-posterior diameter 1.88/1.82; distance from the posterior jugular wall 2.44/2.52; distance from the lateral condylar border 5.26/5.95; and distance from the medial stylomastoid margin 11.23/9.00.

Conclusion: The ICC is not rare and most often communicates with the hypoglossal canal. Recognizing its location and potential venous and meningeal contents can help reduce bleeding and neurovascular injury during far-lateral and transcondylar approaches.

Keywords: Intermediate condylar canal; paracondylar canal; occipital condyle; emissary vein; hypoglossal canal; skull-base surgery.

INTRODUCTION

The paracondylar region of the occipital bone is a compact, high-risk corridor at the skull base. It is bounded by the foramen magnum medially, the hypoglossal canal anteriorly, the posterior condylar

canal posteriorly, and the jugular foramen laterally, the stylomastoid foramen anterolaterally.[1]. Because multiple neurovascular structures converge in this area, even minor bony variants can complicate surgical exposure and

¹Assistant professor, Department of Anatomy, PK Das Institute of Medical Sciences, Vaniamkulam PO, Ottapalam, Palakkad, Kerala, India

²Associate Professor, Department of Anatomy, Al Azhar Medical College, Thodupuzha, Kerala, India

³PSM College of Dental Sciences and Research, Akkikavu, Perumbilavu, Thrissur, Kerala, India

⁴Amala Institute of Medical Sciences, Thrissur, Kerala, India

haemostasis during far lateral and transcondylar approaches. [2]

Within this region, a shallow groove typically runs posteriorly from the hypoglossal canal along the lateral surface of the occipital condyle. When a thin cartilaginous/bony bridge roofs this groove, an anomalous canal—the intermediate condylar canal (ICC), also called the paracondylar canal—may form. The ICC has been reported to transmit emissary venous connections between the suboccipital venous plexus and the anterior condylar venous system/internal jugular origin; meningeal arterial twigs and small neural filaments may also traverse it. These relationships make the ICC clinically relevant, as unanticipated bleeding or iatrogenic injury can occur if the canal is present but unrecognized.

Although the ICC is recognized, it has not been documented consistently. Reported prevalence spans roughly 3% in American material, about 19% in North Indian skulls, and close to one-third in some South Indian series.^[5] Part of this spread reflects population differences and sampling; part reflects how authors define the trait—some include shallow "trace" grooves, whereas others count only fully roofed canals.^[6] Accounts of opening direction (often toward the hypoglossal canal), the presence of a paracondylar tubercle, and precise measurements to standard landmarks are likewise uneven. This variability leaves a practical gap for radiologists and skull-base surgeons when interpreting pre-operative imaging and planning exposures around the occipital condyle.^[7]

A particular shortfall is the scarcity of landmark-based measurements in Indian collections. Few reports present, in one place, the distances from the ICC to the posterior wall of the jugular foramen, the lateral border of the occipital condyle, and the medial margin of the stylomastoid foramen—precisely the dimensions surgeons rely on when working in the paracondylar corridor.

Rationale for the present study. We first noticed bilateral ICCs during routine osteology teaching. This prompted a systematic review of additional skulls to document how often the canal occurs in our setting and how it relates to key operative landmarks. Establishing reliable baseline data for this population can improve recognition on imaging, guide surgical orientation, and help anticipate venous bleeding during approaches that traverse the lateral wall of the hypoglossal canal.

Objectives

1. Prevalence & laterality: estimate how often the ICC occurs in a series of South Indian dry skulls and whether it is unilateral or bilateral;

- 2. Morphology & expression: describe canal form and classify it as complete, incomplete, or trace/groove, and document its direction of opening;
- 3. Morphometry: quantify ICC size and its distances from the posterior wall of the jugular foramen, the lateral border of the occipital condyle, and the medial margin of the stylomastoid foramen;
- 4. Clinical relevance: interpret these findings for radiologic assessment and skull base procedures that use far lateral/transcondylar corridors.

MATERIALS AND METHODS

Study design and setting: This descriptive osteological study was carried out in the Department of Anatomy at a premier dental college in South India, supplemented by skulls borrowed from a neighboring medical college. Skulls were archival teaching specimens of unknown age and sex; those with destructive changes in the paracondylar region were excluded from morphometry.

Identification and classification: Each skull was inspected under good illumination. A flexible probe established patency and the direction of canal opening relative to the hypoglossal canal. Canal expression was categorized as complete (fully roofed), incomplete (partially roofed), or trace (groove-like). The presence of a paracondylar tubercle and accessory foramina was recorded.

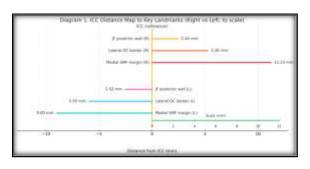
Morphometry: Using a vernier caliper, we measured the maximal transverse and antero-posterior diameters and the linear distances from (i) the posterior wall of the jugular foramen, (ii) the lateral border of the occipital condyle, and (iii) the medial margin of the stylomastoid foramen, bilaterally when present. Averages are reported in millimeters.

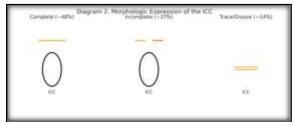
Statistics: Given the exploratory design and absence of demographic data, analysis was restricted to descriptive statistics (counts, percentages, means).

Ethics: The PSM College of Dental Sciences Institutional Ethics Committee approved the protocol, Akkikavu, Kerala. As only anonymized skeletal material was used, individual consent was not required.

RESULTS

Prevalence and laterality: The ICC was present in 18/50 skulls (36%); seven skulls had bilateral canals, and eleven had unilateral canals (a total of 25 canals).


Table 1: Prevalence and morphology summary


Measure	Value
Skulls examined (n)	50
Skulls with ICC (n, %)	18 (36%)
Laterality – bilateral skulls (n)	7
Laterality – unilateral skulls (n)	11

Total ICC canals (n)	25
Opening into the hypoglossal canal (% of canals)	≈94.5%
Canal expression – complete (%)	≈48%
Canal expression – incomplete (%)	≈37%
Canal expression – trace/groove (%)	≈14%

Table 2: Morphometry (mean values in millimeters)

Variable (average, mm)	Right	Left	
Transverse diameter	2.43	2.37	
Antero-posterior diameter	1.88	1.82	
Distance from the posterior wall of the jugular foramen	2.44	2.52	
Distance from the lateral border of the occipital condyle	5.26	5.95	
Distance from the medial margin of the stylomastoid foramen	11.23	9.0	

DISCUSSION

Summary of findings: In this osteological series, the ICC occurred in over one-third of skulls and was frequently bilateral. Most canals communicated anteriorly with the hypoglossal canal. Canal expression ranged from groove-like to fully roofed, and morphometry placed the ICC within a few millimeters of the jugular foramen posterior wall, the lateral border of the occipital condyle, and the medial stylomastoid margin—exactly where far-lateral and transcondylar corridors traverse.

Comparison with prior studies: Published prevalence figures vary widely by population and method, from ~3% in some American series to ~19% in North India and ~33% in South India. Differences likely reflect ancestry, sample sizes, and whether trace grooves were counted or only fully roofed canals included. Our finding that most ICCs open toward the hypoglossal canal agrees with reports that the canal can carry emissary veins linking the suboccipital plexus to the anterior condylar system/internal jugular origin, and with accounts of meningeal arterial twigs and small neural filaments passing anterior to the hypoglossal canal. [9,10]

Strengths and limitations: Strengths include systematic assessment of laterality, canal expression, and opening direction, as well as quantitative distances to reliable surgical landmarks to aid recognition. Limitations include the convenience

sample, unknown age/sex/ancestry of skulls, small measurement error at millimetric scale, and descriptive analysis without imaging confirmation (e.g., micro-CT/venography) of canal contents.

Anticipating an emissary channel in the paracondylar region is prudent during transcondylar/far-lateral approaches. Pre-operative thin-slice CT focused on the paracondylar area and cautious extradural dissection over the lateral hypoglossal canal may reduce bleeding and neurovascular injury.

CONCLUSION

The intermediate condylar canal was present in 36% of skulls and most often communicated with the hypoglossal canal. Its proximity to key landmarks underscores the need for careful pre-operative recognition and intraoperative vigilance in skull-base surgery.

Acknowledgments: We thank the Departments of Anatomy at PSM College of Dental Sciences and Research and Amala Institute of Medical Sciences for access to teaching collections and logistical support. We appreciate colleagues who assisted with cataloguing and photography.

REFERENCES

- Syed, A., Olewnik, Ł., Georgiev, G., Iwanaga, J., Dumont, A., & Tubbs, R. (2022). Three ipsilateral paracondylar processes with other skull base variations: case report. Anatomy & Cell Biology, 55, 247 - 250. https://doi.org/10.5115/acb.22.004.
- Ahmadieh, T., Haider, A., & Cohen-Gadol, A. (2021). The Far-Lateral Suboccipital Approach to the Lesions of the Craniovertebral Junction.. World Neurosurgery, 155, 218-228. https://doi.org/10.1016/j.wneu.2021.08.018.
- Chentanez, V., & Thintharua, P. (2022). Surgical Anatomy of the occipital condyle and its relation to the hypoglossal canal. The FASEB Journal, 36. https://doi.org/10.1096/fasebj.2022.36.s1.r3026.
- Smith, W., Pekala, P., Iwanaga, J., Loukas, M., Dumont, A., Walocha, J., & Tubbs, R. (2022). The Forgotten Intermediate Condylar Canal: Anatomical Study with Application to Skull Base Surgery. World Neurosurgery. https://doi.org/10.1016/j.wneu.2022.01.028.
- Martins, J., Tummala, S., Nallapati, S., Marques, D., Silva, E., Caramês, J., & Versiani, M. (2025). Population-Specific Anatomical Variations in Premolar Root Canal Systems: A Cross-Sectional Cone-Beam Computed Tomography Study of Jamaican and Portuguese Subpopulations. Dentistry Journal, 13. https://doi.org/10.3390/dj13020050.
- Faria-Teixeira, M., Azevedo-Coutinho, F., Serrano, Â., Yañez-Vico, R., Silva, F., Vaz-Carneiro, A., & Iglesias-Linares, A. (2025). Orthognathic surgery-related condylar

- resorption in patients with skeletal class III malocclusion versus class II malocclusion: a systematic review and meta-analysis. BMC Oral Health, 25. https://doi.org/10.1186/s12903-024-04921-3.
- Verhelst, P., Verstraete, L., Shaheen, E., Shujaat, S., Darche, V., Jacobs, R., Swennen, G., & Politis, C. (2020). Threedimensional cone beam computed tomography analysis protocols for condylar remodeling following orthognathic surgery: a systematic review.. International journal of oral and maxillofacial surgery. https://doi.org/10.1016/j.ijom.2019.05.009.
- Ramamoorthy, B., Pai, M., Prabhu, L., Muralimanju, B., & Rai, R. (2016). Assessment of craniometric traits in South
- $\begin{array}{ll} \mbox{Indian dry skulls for sex determination. Journal of forensic and legal} & \mbox{medicine,} & 37, & 8-14. \\ \mbox{https://doi.org/} 10.1016/j.jflm.2015.10.001. & \end{array}$
- Ni, J., Pei, Y., Xu, Z., Zhang, B., Sun, Z., Wu, X., & Liang, L. (2023). Three-dimensional anatomy of the hypoglossal canal: a plastinated histologic study. World Neurosurgery. https://doi.org/10.1016/j.wneu.2023.07.075.
- Matsushima, K., Kawashima, M., Matsushima, T., Hiraishi, T., Noguchi, T., & Kuraoka, A. (2013). Posterior condylar canals and posterior condylar emissary veins—a microsurgical and CT anatomical study. Neurosurgical Review, 37, 115-126. https://doi.org/10.1007/s10143-013-0493-7.